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1 | INTRODUCTION

With a share of 23% of total CO, emissions, transportation is a major
CO, emission source.! Replacing fossil fuels with renewable
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Abstract

Fuels with high-knock resistance enable modern spark-ignition engines to achieve
high efficiency and thus low CO, emissions. Identification of molecules with desired
autoignition properties indicated by a high research octane number and a high octane
sensitivity is therefore of great practical relevance and can be supported by
computer-aided molecular design (CAMD). Recent developments in the field of graph
machine learning (graph-ML) provide novel, promising tools for CAMD. We propose
a modular graph-ML CAMD framework that integrates generative graph-ML models
with graph neural networks and optimization, enabling the design of molecules with
desired ignition properties in a continuous molecular space. In particular, we explore
the potential of Bayesian optimization and genetic algorithms in combination with
generative graph-ML models. The graph-ML CAMD framework successfully identifies
well-established high-octane components. It also suggests new candidates, one of
which we experimentally investigate and use to illustrate the need for further auto-

ignition training data.

KEYWORDS
computer-aided molecular design, fuel design, graph machine learning, graph neural networks,
machine learning, optimization, renewable fuels, spark-ignition engines

alternatives may provide a path toward carbon neutrality for the
transportation sector and is investigated actively.>”> An important
step toward renewable fuels is the search for suitable gasoline substi-
tutes for use in advanced high compression, turbocharged spark-
ignition (Sl) engines. A property of paramount importance for a renew-
able S| engine fuel is knock resistance, traditionally indicated by the
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research octane number (RON),® the motor octane number (MON),” and
more recently the octane sensitivity (OS), that is, the difference
between RON and MON values. The weighted sum of RON and OS is
referred to as the octane index (O1).8 For modern SI engines, fuels with
both high RON and high OS, hence high Ol, are desired as they enable
engine operation at conditions associated with particularly high
efficiency.””*®> To boost the Ol of a fuel, chemical species with high
RON and high OS such as ethanol and MTBE can be added.'*” Iden-
tification of further molecules providing octane boosting is of great
practical relevance and is studied actively, for example, see references
17,18. Herein, we aim to identify such promising candidates exhibiting
both high RON and high OS by computer-aided molecular design
(CAMD). In particular, we investigate the role of novel methods from
the domain of graph machine learning (graph-ML).

Traditionally, the search for molecules with desired properties for
a given application has been mostly guided by human experts and
experimentation. CAMD can enhance this process by utilizing compu-
tational methods to efficiently pre-screen a large number of molecular
structures so that experiments can be dedicated to the most promis-
ing candidates. A wide variety of methods and tools for CAMD has
been proposed over the last decades; we refer the interested reader
to review articles for a detailed CAMD overview.?? 2> Generally, the
CAMD process incorporates the computational generation of candi-
date structures and the model-based prediction of their physico-
chemical properties. Well-established approaches for the generation
of candidate structures include formulating optimization problems in
which structural groups are pieced together to form molecules,?*2%
exhaustive generation of molecular structures in a sequential
generate-and-test manner,?” and utilizing evolutionary theory to
evolve molecular structures.?® For predicting application-relevant
properties of the formed candidate structures, CAMD typically
employs quantitative structure-property relationships (QSPRs).??
QSPRs first describe the molecular structure by so-called molecular
descriptors, for example, atom counts, and secondly map those
descriptors to a property of interest by linear or nonlinear models.
Today, nonlinear ML models such as feedforward neural networks or
random forests are often utilized in this regression step.%°~32

For classical CAMD, a broad range of applications?® can be found
in the process systems engineering (PSE) literature, covering the
design of single molecules (e.g., ionic liquids,®® polymers2?), the design

of mixtures,®4-3¢

as well as integrated product and process
design.®”8 Classical CAMD techniques have also been applied exten-
sively in the context of fuel design.2?~*® For example, in two previ-

4044 \we used enumeration-based generation of

ous articles,
oxygenated hydrocarbons and subsequently screened the obtained
molecules via QSPR models with respect to engine-relevant proper-
ties. We previously also developed a generate-and-test approach
where molecular candidates are generated by iteratively refunctiona-
lizing bioderived intermediates based on pre-defined transformation
rules.? Also, Cai et al.** proposed a gasoline design model that
employs rule-based transformation of molecules in combination with
QSPR for property prediction to identify molecules with desired fuel

properties such as high RON.

ML has recently been utilized for molecular structure generation
by means of generative ML models, leading to novel, fully ML-based
CAMD approaches.?>*¢ In generative ML for molecules, two main
directions can be distinguished: String-based approaches, for example,
based on SMILES strings,”” and graph-based approaches, the
latter directly working on the molecular graph. For both directions, a
range of models has been developed such as recurrent neural net-
works (RNNs), variational or adversarial autoencoders (VAEs/AAEs),
generative adversarial networks (GANSs), and reinforcement learning
(RL).***® The goal of such generative ML techniques is the unsuper-
vised learning from a data set of molecular structures to generate
new, chemically feasible structures that were not seen during training,
thereby designing molecules. Specifically, generative ML models typi-
cally learn to encode molecules into a continuous space, the so-called
latent space, and then decode samples from the latent space back to
molecular structures. The continuous latent space is assumed to cap-
ture chemical information about molecules and embed molecules with
similar structure or even similar properties close to each other.*’
Depending on the model architecture, ML-based CAMD typically
relies either on strategic sampling of molecules from the latent space
of the generative model using optimization strategies, for example,
with VAEs,”°>2 or on direct generation of molecules with desired

5354 or RL.°>°% In contrast to classi-

properties, for example, by GANs
cal CAMD, generative models in ML-based CAMD replace discrete
molecule representations such as combinations of structural groups,
molecular graphs, or SMILES strings with a continuous representation,
thus enabling the use of continuous optimization approaches for
molecular design.>”

ML has also recently enabled end-to-end learning of physico-
chemical properties from molecular structure by means of graph neu-
ral networks (GNNs).>87%° GNNs are graph-ML architectures that
directly operate on the underlying graph structure of a molecule and
thus circumvent the need for selecting meaningful molecular descrip-
tors, a step that is inherent to all QSPR/QSAR approaches. Instead,
GNNs enable a data-driven end-to-end learning framework for molec-
ular property prediction.

Up to now, fully ML-driven CAMD has mainly focused on drug
design.*617%% A particular reason might be the availability of large
training data sets and the incorporation of multiple drug design targets
such as logP and drug-likeness in benchmarking platforms such as
MOSES®* and GuacaMol.®® Such ML-driven CAMD approaches often
combine molecule generation and property prediction (e.g., VAEs®1°?),
and sometimes optimization (e.g., GANs>3°% or RL*®) in a single ML
model which needs to be retrained once the design target property
changes and typically requires large property data sets for training.

In contrast to drug design, PSE applications, in particular model-
based fuel design, often take place in a data-scarce environment, making
ML-based CAMD challenging. In fact, there is only one very recent
study using generative ML for fuel design: Liu et al.®® employed a string-
based VAE to generate a large database of non-oxygenated hydrocar-
bons for subsequent screening of candidates with respect to fuel prop-
erties, followed by sampling further candidates from the most promising

regions of the VAE's latent space. However, ML-driven CAMD has not
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FIGURE 1

yet been utilized for fuel design focusing on high S| engine efficiency
including oxygenated hydrocarbons. Moreover, graph-ML approaches
have not yet been applied to computer-aided fuel design.

In the present contribution, we propose a modular graph-ML
CAMD framework* that integrates state-of-the-art graph-based ML
methods and tools from the ML and drug design community and apply
our framework to computer-aided design of high-octane fuel compo-
nents for Sl engines. Our framework is depicted in Figure 1 and con-
sists of three distinct modules: (1) molecule generation by generative
graph-ML models that learn a continuous molecular space from which
new molecules can be generated; (2) property prediction through our
recently published GNN model for fuel ignition quality prediction®®;
(3) optimization for strategic sampling from the continuous space of
the generative graph-ML models to identify vectors that correspond
to molecules with high predicted RON and OS values. Our framework
has a modular architecture requiring minimal changes to the model
structures if an additional property shall be targeted, that is, only a
new property model needs to be trained and added, but the molecule
generation and optimization modules do not need to be altered. Thus,
the modular setup enhances reusability and therefore reduces the
training effort compared to a single ML model approach, as indicated
by Winter et al.’

We explore three different generative graph-ML models and two
different optimization strategies. Importantly, we propose an applica-
bility domain approach for GNN-based property prediction that allows
us to focus the design process on molecules that presumably come
with reliable predictions. We analyze the influence of the different
ML methods on the structure and properties of the resulting mole-
cules and compile a list of most promising high-octane fuel candidates.
Finally, we perform an experimental investigation of one selected
high-octane fuel candidate that emphasizes the importance of experi-
mental validation of CAMD results and discuss potential pitfalls of the
fully data-driven approach, particularly in a data-scarce environment.

The article is structured as follows: In Section 2, we briefly intro-

duce the main principles behind graph-ML for molecules with regard

Schematic overview of the modular graph-ML CAMD framework for identification of high-octane fuels

to both molecule generation and property prediction. In Section 3, we
present the modular graph-ML CAMD framework for design of high-
octane fuels. The application of the framework in Section 4 includes a
comparative analysis of the candidates obtained with different graph-
ML modules and the experimental investigation of one particular can-
didate. Section 5 concludes our work.

2 | PRELIMINARIES OF GRAPH MACHINE
LEARNING

Graph-ML relies on a graph representation of molecules that can be uti-
lized for generating molecular structures from a continuous space and for
property prediction, as we briefly describe in the following. The interested

reader is referred to references 70-72 for further details on graph-ML.

2.1 | Molecular graph

The molecular graph of a molecule is an undirected graph G = {V, F.,
E, F.}; the nodes V represent the atoms; pairs of atoms u, v € V that
share a bond are connected by edges (u, v) € E. Additional features of
nodes (e.g., type of atom, degree of hybridization) are stored in F,, while
additional features of edges (e.g., bond length or type) are stored in F..

2.2 | Generative models

Generative ML, the unsupervised learning from input data to generate
new data that is similar to the provided data, allows to perform fully
data-driven molecule generation and is an active research
area.***84373 various works have developed string-based ML models
in order to generate molecules with optimal properties based on
SMILES,”*"81 InChl,*° or SELFIES,’® the latter being a more robust
string representation of molecules. In contrast, graph-ML directly
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FIGURE 2 Schematic structure of (A) VAEs and (B) GANs

works on the molecular graph which is arguably the more natural rep-
resentation of a molecule and provides permutation invariance,®? that
is, there is exactly one molecular graph for each molecule (neglecting
steric effects). In this article, we focus on two frequently employed
generative graph-ML approaches?®#®¢%. VAEs and GANs. Both
methods construct a latent space where molecules are encoded as
high-dimensional continuous vectors, referred to as latent vectors
(LVs), which we denote as hyy € R" with the dimension n being a
hyperparameter. We denote the encoding of a molecular graph into
the latent space as a function

€GeN : Gmol — hry. (1)

Autoencoders, and specifically VAEs, are a class of neural net-
work architectures that employs an hourglass shape (cf. Figure 2A).
They are trained to reproduce the input data at the output layer, a
non-trivial task as the information has to be moved through some
narrow layers in the middle of the network, that is, the hourglass
shape forces VAEs to learn h,y as a low-dimensional representation
of the input data at the most narrow layer. The left part of the net-
work (from input to the latent vector) is called the encoder and the
right part (from the latent vector to the output) is referred to as the
decoder. The main difference between a standard autoencoder and
a variational autoencoder (VAE) is that the latter assumes an under-
lying distribution for the data that it tries to learn in the latent vec-
tor space, for example, a multivariate Gaussian distribution
hyy ~ N (4, ) with parameters pu and =. VAEs can therefore be used

to generate new data from presumably the same distribution as the
input data. In the molecular context, VAEs map discrete molecule rep-
resentations such as graphs to a continuous distribution from which
new molecules can be sampled.

GANSs generate objects from a latent representation in a different
manner (cf. Figure 2B). Instead of trying to reproduce an input sample,
a GAN consists of two neural networks, a generator and a discrimina-
tor, where the discriminator is trained to distinguish between output
data produced by the generator and real data, that is, the training
samples. The generator thus learns to produce output data that
resembles a given training data based on random input vectors hyy
that are, for example, sampled from a Gaussian distribution, that is,
hiy ~N (g, Z). In a GAN, the latent space therefore corresponds to
the input space of the generator. We denote the decoding of the
latent vector hyy to the molecular graph in case of both generators,
VAE and GAN, with the function

deen : hy = Grol. (2)

2.3 | Graph-based property prediction
A GNN°?%° s a type of neural network that operates directly on the
graph structure and thus enables end-to-end learning in molecular
property prediction. Thereby, GNNs avoid the need for the often sub-
jective manual selection process of molecular descriptors in QSPR/
QSAR modeling that requires intuition and experience of the modeler.
GNNs for molecular property prediction are typically structured
into two parts, a message passing phase and a readout phase®3%4
(cf. Figure 3). In the message passing phase, structural information is
extracted from a local neighborhood of atoms by means of graph con-
volutions. In each graph convolution, every node sends a message to
all its neighbors and thus also receives a message from each of its
neighbors. The node uses the received messages, typically in form of
a weighted sum, to update its current state (e.g., in GCN’° and
GAT®%). The update of the state h(, of a node v in a graph convolu-
tional layer I can then be written as

h,™" =oreu [ LW1+ > W, |, (3)

ueN(v)

l End-to-end learning >

Message passing Readout

G = - I H — Property
© - [ -

Graph convolutions Pooling  Molecular  Feedforward
fingerprint  neural network

Molecular_
graph <

FIGURE 3 Schematic structure of a graph neural network for
molecular property prediction
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where W, W, are trainable weight matrices, N(v) is the one-hop
neighborhood of v, and oge y denotes the elementwise application of
the ReLU activation function. Many different update functions have
been proposed in the last years, see, for example, references
71,86,87, to advance the basic Equation (3) into a more powerful
model for extracting information from the graph during message pass-
ing.28 For instance, inter-atomic distances and angles between atom

89-92 93,94 and

pairs are commonly considered. Higher-order GNNs
approaches where the information exchange is also based on individ-
ual edges”® constitute further extensions to the basic GNN approach.

Subsequent to the message passing phase, a GNN employs a
readout phase, where the molecular structure information that is
stored in the nodes is aggregated into a single vector for the complete
molecule, the so-called molecular fingerprint hgp. This aggregation, also
called pooling, is typically performed by summing up the states of all
nodes in the molecular graph after the last graph convolutional layer
L, that is, hep = > vev h,!. We denote the GNN encoding of the

molecular graph into the molecular fingerprint with the function
36NN * Gmol + hp. (4)

Note that although the molecular fingerprint hgp in @ GNN and the
latent vector hyy in a generative ML model both represent a molecule
in a continuous space, they are not related. In the GNN, the molecular
fingerprint hgp is passed through a feedforward neural network
(cf. Figure 3) to yield the property prediction p = MLP(hgp). Here, a
multi-layer perceptron (MLP) is one of the simplest feedforward neu-

ral architectures and most frequently employed. We denote the entire

AI?BIFJ R NALJE’;f18

end-to-end prediction process of a GNN as a function fgyn that maps

the molecular graphs to a property prediction, that is,

fonN : Gmol — P (5)

3 | GRAPH-ML CAMD FRAMEWORK FOR
HIGH-OCTANE FUELS

In this section, we propose a fully data-driven, modular graph-ML
CAMD framework for identification of high-octane fuels. The frame-
work utilizes recent methods from the field of generative graph-ML
and GNNs to design molecules with high-knock resistance for mod-
ern Sl engines. Specifically, we set out to maximize the sum of RON
and OS, hence the Ol, as high-efficiency S| engines require both a
high RON and a high 05.77%> We show a high-level overview of our
framework in Figure 1 and provide a detailed framework overview
including our choices for algorithms and models in the three differ-
ent modules in Figure 4. We combine the three modules to form an
iterative molecular design loop: The optimization module proposes
initial latent vectors from a continuous space, h,y, that are translated
to corresponding molecules by the molecule generation module,
cf. Equation (2). Then, the property prediction module performs the
property evaluation, cf. Equation (5), and based on the property pre-
dictions, the optimization algorithm suggests new latent vectors to
be tested. This iterative procedure is repeated until a pre-defined
stopping criterion is met, for example, a certain number of molecules

has been evaluated.

i. Select one generative model and one optimization approach and specify stopping criterion (#molecules or run time)

ii. Initialize design loop with random samples from continuous latent space

1. Molecule generation

JT-VAE

1

LV, LV,

3. Optimization
Bayesian optimization

Genetic algorithm

MHG-VAE . 0 i ORI Molecular
MOIGAN T e e o e e graph
) /
. . iii. Run high-
Lo .0- Continuous octane fuel
L] .
1“‘.‘/:/- . latent design loop
o, o .o . vector until _sto_pping
L]
criterion Applicability

2. Property prediction

GNN for fuel ignition quality

domain

RON+OS | .

penalty

iv. Receive list of molecular candidates with predicted target property values

FIGURE 4 Detailed overview of the modular graph-ML CAMD framework for identification of high-octane fuels including methods for the

individual modules
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An important observation with the graph-ML CAMD framework
though is that not all molecules come with physically reasonable pre-
dictions. For instance, we have observed a molecule with predicted
OS > 400 and negative RON and negative MON.t In fact, the optimi-
zation often exploits weak spots of the GNN prediction model. Those
weak spots typically appear for molecules that are strongly dissimilar
from the molecules used for training the GNN. To focus on molecules
with more reasonable property predictions, we extend the iterative
design loop by an applicability domain (AD) for the GNN property pre-
diction model. To this end, we build upon the AD approach from our
previous study”® where we proposed to use a one-class classification
model to identify the AD of feedforward NNs. The classification
model learns from the data on which the NN is trained to decide if a
new data point is similar to the training data and thus considered
within the input domain for which the NN presumably provides reli-
able predictions. To transfer the AD approach to GNNs, we apply the
classification model to the molecular fingerprint that serves as input
to the MLP part of the GNN (cf. Section 2.3). If the AD is included,
GNN predictions considered unreliable by the AD are ignored and
instead a penalty value (—1000) is returned to the optimization
approach so that the corresponding molecules are assigned a low
objective value.

The design loop runs can be formulated as an optimization prob-
lem that aims to find the molecules with the highest predicted value
of a certain target property p of interest, that is,

maxp, P

s.t. Gumol = dcen(hiy),
P =fonn(Gmot)s (6)
hep = 36NN (Gmol)s
AD(hep) 20,

whereby the constraint with AD(hgp) = O denotes a positive decision
by the AD model.

Due to the high dimensionality of the search space that corre-
sponds to the latent space of the generator models (see
Equation (6)), deterministic global optimization is too computation-
ally costly and practically impossible with current methods
(cf. Section 3.3 below). Instead, we employ black-box optimization
approaches that direct a heuristic search toward molecules with
high p. Note that uncertainties in the prediction model prohibit a strict
ranking of molecular candidates with similar p values. Practically, we
therefore compile a list of molecules sampled by the optimizer and
perform an investigation of the top candidates, that is, the molecules
with the highest p values. Having multiple top candidates, also allows
to take additional desired properties into account in later investiga-
tions, for example, availability for procurement and low production
costs.

In the following, we briefly describe the three generative graph-
ML models used in this article for the generation module, the GNN
model used for the property prediction module, the two optimiza-
tion algorithms used in the optimization module, and our AD

approach.

3.1 | Molecule generation

We consider two graph VAE models as generators: The Junction-Tree
VAE by Jin et al.>* (JT-VAE) and the Molecular Hypergraph Grammar
VAE by Kajino®? (MHG-VAE). Furthermore, we employ MolGAN, a
GAN for molecular graphs published by De Cao and Kipf.>* Those
three models have close to 100% chemical validity, that is, almost

51,5254 5 faq.

100% of the generated molecules are chemically feasible,
ture that earlier generative methods struggled with, cf. references
97,98. Apart from achieving high validity, the three models have
strong conceptual differences, presumably leading to molecules with
somewhat different characteristics.

The JT-VAE®? utilizes two graph representations of a molecule in
parallel: The molecular graph and its associated junction tree, which is a
contracted cycle-free graph generated by merging cycles of atoms into
a single node. For encoding, the JT-VAE learns molecular structure
information, represented as high-dimensional vectors, from the
molecular graph and the junction tree through graph convolutions
(cf. Section 2). For decoding, first, the junction tree's latent vector is
decoded resulting in the general molecular structure. Then, the molecu-
lar graph's latent vector is decoded to determine the characteristics of
the nodes within the junction tree, that is, (re)generating the local struc-
ture of the molecule. Jin et al. report a molecule reconstruction rate of
76.7% and 100% chemical validity of the decoded molecules.’*

The MHG-VAE>? generates a graph grammar from the given
training molecules which is used for the reconstruction of molecules.
In this automatically generated graph grammar, terminal symbols can
refer to either single atoms or complete functional groups and the
rules of the grammar describe how such atoms of partial molecules
can be combined into a chemically valid molecule. During the genera-
tion of the grammar, MHG-VAE ensures that the grammar accounts
for chemical feasibility constraints such as valency rules, explaining
the validity of 100%.

MolGAN>* only partially relies on graphs. Its adaptation to our
case of high-octane fuel design is illustrated in Figure 5. The generator
tries to directly predict a molecular graph's adjacency matrix with cor-
responding atom and bond features by using an MLP with a fixed out-

put size, that is, the maximal size of a molecule that can be predicted

generator discriminator

reward network

GNN
¥
RON+0S

FIGURE 5 Adapted MolGAN for high-octane fuels, modified from
reference 54. The reward network is coupled with our GNN®® for
predicting RON and OS values.
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by MoIGAN is bounded. On the other hand, the discriminator is a
GNN. One conceptual difference to the VAEs is that MolGAN is able
to focus the generation on molecules with desirable properties by
using a “reward network”, that is, a third network that encourages the
generator to output molecules with high RON and OS. We use our
GNN model®® to provide RON and OS predictions such that, in con-
trast to the VAEs, the training of MolGAN partially depends on the
property prediction module. De Cao and Kipf state that while
MoIGAN generates novel molecules with desirable properties and
almost 100% chemical validity, it also outputs many duplicates with
only about one in 10 molecules being unique.>*

3.2 | Property prediction

We recently developed a GNN for predicting the RON, MON, and the
derived cetane number (DCN) of a wide range of oxygenated and
non-oxygenated hydrocarbons,®® for example, (cyclo-) alkanes,
(cyclo-) alkenes, alcohols, esters, ethers, aromatics, and ketones. The
model architecture is based on higher-order GNNs”3 and additionally
leverages the increased stability and accuracy of ensemble
methods,”?1% that is, the final property prediction is the average of
multiple higher-order GNN predictions. Further, our GNN incorpo-
rates multitask learning’©31°? as it was trained on RON, MON, and
DCN values simultaneously allowing the model to capture and exploit
correlations between octane and cetane numbers.

As described in detail in reference 68, we compiled a data set
comprising 335 RON, 318 MON, and 236 DCN values for 505 unique
molecules in total to train the GNN. 85% of the data was used for
training and validation, and 15% was used for testing. Note that for
most molecules, both RON and MON values and thus OS were avail-
able. The mean absolute prediction error of the GNN model was 4.5
on the RON test set and 4.4 on the MON test set, indicating an over-
all high prediction quality on par with state-of-the-art QSPR- and ML-
based RON and MON prediction models, cf. reference 68. The test
sets also contain few outliers: Six predictions for RON and seven pre-
dictions for MON have a deviation >10, which we attribute, similarly
to vom Lehn et al.,2°® to some of these molecules having unique char-
acteristics that are not well represented in the training data, a rela-
tively small number of data points available with low RON and MON
values, and potential disruptive factors in experimental data assem-
bled from different sources.

3.3 | Optimization

To sample molecules with high RON and OS from the latent space of
the generative models, we employ numerical optimization using the
RON -+ OS score predicted by the GNN model as objective function.
Specifically, we seek to maximize p=RON +OS =2-RON — MON (cf.
Equation (6)). We explore two derivative-free stochastic global optimi-
zation methods to perform the molecule sampling: A Bayesian optimi-

zation algorithm and a genetic algorithm.

AI?BIFJ R NALJ7;f18

Bayesian optimization (BO) is a probabilistic approach for global
optimization'®* commonly used for optimization of black-box models
that are costly to evaluate. Usage of BO is well-established in
ML-based CAMD, see, for example, references 51,52,75, as well as
in chemical engineering applications, for example, the design of exper-
iments in automated reaction platforms.’°>~1%7 BO uses a surrogate
model, typically a Gaussian process (GP), to map the input variables to
the objective. Based on the surrogate model, an acquisition function
locates input variable values that have a high potential of maximizing
the objective by accounting for both exploitation and exploration. For
running BO, the GP is initialized with a set of feasible points. Then,
the following steps are repeated until a termination criterion is
reached: The acquisition function is optimized to determine the next
sampling points, the sampling points are evaluated with respect to the
objective function, and the objective values are used to refine the sur-
rogate model. Note that different optimization algorithms can be used
for maximizing the acquisition function, cf. reference 104.

A genetic algorithm (GA) is a meta-heuristic, population-based
approach for global optimization that is inspired from evolutionary the-

ory.108'109

and fast evaluations of the objective function. In GAs, a set of feasible

It is typically applied to optimization problems with cheap

points is called population. Each feasible point has genes corresponding
to specific values for the input variables of the optimization problem
and constitutes a fitness related to the objective value. To solve an
optimization problem, an initial population evolves in an iterative man-
ner over multiple generations by promoting points with high fitness and
using evolutionary heuristics, for example, combining genes of high fit-
ness points, to replace points with low fitness. We choose the fitness
to be RON + OS to directly optimize for high-octane ratings.

A major challenge in ML-based CAMD is the high dimensionality of
the generators' latent space which typically requires a large number of
sampling points for optimization, for example, in case of our generative
models, we have latent space dimensionalities of 56 (JT-VAE),>*
72 (MHG-VAE),>2 and 32 (MolGAN).>* BO, however, employs a GP as
surrogate model that in standard form has cubic scaling in complexity
with respect to the number of sampling data points. Following the strat-
egy by Kajino,>? we thus use PCA to reduce the dimensions of both the
JT-VAE and the MHG-VAE before performing BO. Since the execution
time of the evolutionary-based heuristics in the GA does not suffer from
a high number of sampling points, we run the GA without dimensionality
reduction. Note that the effects of PCA-based dimensionality reduction
on the obtained molecules as well as the use of other mitigation strate-
gies, such as reduction of the latent dimension within the generator or
modification of BO for high-dimensional problems, see, for example, ref-

erences 104,110-113, are beyond the scope of this work.

3.4 | Applicability domain

The AD of a model is a well-established concept in QSPR/QSAR
modeling and is based on the general assumption that the prediction
model would provide most reliable predictions for molecules that are

similar to the ones seen during training.***~**” Molecular similarity is
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usually assessed by means of a distance metric, for example, the
Euclidean distance between the descriptor values of two mole-
cules.**>18 For molecular property prediction with GNNs, determina-
tion of the AD is largely unexplored. Only very recently first
approaches to quantify the AD of GNNs based on uncertainty quanti-
fication methods were proposed.’?"121 Conceptually, defining the
AD of a GNN requires handling the varying input sizes of molecular
graphs and measuring the degree of similarity between different
graphs. In this work, we address these challenges by extending our
recently developed AD approach based on one-class support vector
machines (SVMs)?® to GNNs. A one-class SVM is a ML model that can
be used to identify outliers by classifying whether an input is similar
or dissimilar to the training data. We train one-class SVMs on the
molecular fingerprint of the GNN (cf. Figure 3) to determine the
GNN's AD. We then restrict our molecular design loop to molecules
which are accepted by the SVM (cf. Equation (6)) which formally
means AD()) = SVMap(hep train) 2 O Where hgp train is the molecular fin-
gerprint computed by the GNN and SVM,p denotes the trained SVM.
The underlying idea for the AD is that the GNN computes similar
molecular fingerprints whenever two molecules are structurally simi-
lar. Since our prediction model is an ensemble of multiple GNNs, we
train one SVM for each GNN model in the ensemble and apply a
majority vote. That is, each SVM j evaluates SVMap, j(hep) and returns
1 if the molecule lies within the AD or —1 if not. Subsequently, we
sum up the votes to decide if the prediction of the GNN ensemble
(EL) for a new molecules is classified as reliable, that is,
SVMnp-eL(hrp) =" SVMapji(hep) ; 0. Note that further details on
the AD are descriBed in the Supporting Information S1.

3.5 | Implementation and hyperparameters

We implement our graph-ML CAMD framework in Python with the
cheminformatic package RDKit'?? and the ML frameworks pytorch
and tensorflow, accounting for the different implementations of the
generators, and provide our code open-source, see, reference 67.
Moreover, we follow the implementation of the MHG-VAE by
Kajino®2 and use Luigi'?® to automate computational experiments.
For the three generators, JT-VAE,** MHG-VAE,*? and MolGAN,** we
use the original implementations and hyperparameters as provided in
the respective study and code repository and only extend the code to
work in our framework. We train the molecule generation models on
all HCO-molecules in the QM9 data set,*?*'2> that is, all molecules
within QM9 that contain exclusively hydrogen, carbon, and oxygen
atoms. QM9 contains approximately 50,000 HCO-molecules from
various molecular classes. We use the original implementation
and model parameters of our GNN®® which is based on pytorch-
geometric.’?® The SVMs for the AD are implemented with scikit-
learn?” building on our AD study.”® For BO, we use GPyOpt.1?8
Note that we did not attempt deterministic global optimization of
the acquisition function within the BO, for example, by using our tool
MeLOn,*??13 due to the high dimensionality (cf. Section 3.3) and
associated high computational cost. Thus, we use the local

optimization algorithm L-BFGS*®! implemented in GPyOpt.1?® As GA,
we use the python package geneticalgorithm.3? For both BO and GA,
we apply default settings. We follow the study of MHG-VAE by
Kajino®2 and reduce the dimensionality of the latent space within the
VAEs by means of PCA aiming for an explained variance ratio of
99.9% (JT-VAE: from 56 to 41, MHG-VAE: from 72 to 38) before per-
forming BO. Further details on the hyperparameter choice can be
found in the Supporting Information S1. We run all computations on
the HPC-cluster (CLAIX-2018) of RWTH Aachen University using one
Supermicro 1029GQ-TVRT-01 node of an Intel Platinum 8160 core
with 192 GB RAM, of which we used at most 8 GB, plus one NVIDIA
Volta V100-SXM2 16 GB GPU. For reproducibility, we fixed random
seeds for training the models and running the design loop that we

provide with our code.

4 | RESULTS AND DISCUSSION

We first present the computational results of our graph-based CAMD
of high-octane fuels and then provide a discussion of the top candi-
dates to demonstrate both strengths and potential weaknesses of the

fully data-driven design approach.

41 | CAMD results

We test all combinations of the three generator models (JT-VAE,
MHG-VAE, and MolGAN) and the two optimization approaches
(BO and GA) as well as two different stopping criteria (SC), that is, a
limit on the number of candidate molecules generated (SCymolecs) and
an upper limit on the wall-clock run time (SCme). For SCymolecs, We
consider both the number of unique molecules (1000) and the total
number of molecules (2000) generated, as the number of duplicates
can otherwise cause an unlimited run time. In the SCgnolecs Setting,
the design loop will typically run for 0.5-8 h. The run time limit
in SCiime is set to 12 h to investigate the effects of keeping the
design loop running for a longer time. Furthermore, we distinguish
between runs with and without the AD. All design loop runs are run
five times (initialized with different random seeds) and the results are
aggregated.

The top 12 molecules identified with SCymolecs and active AD for
the respective generators are shown in Figure 6 together with the
predicted RON and OS values. The results demonstrate that the gen-
erators successfully propose molecules with high predicted RON and
OS. Moreover, the top molecules are from a variety of different
molecular classes, for example, ethers, alcohols, and ketones, some of
which are known to contain promising Sl engine fuel candidates.? The
majority of molecules has at least one oxygen atom. Almost all top
molecules generated by MolGAN include a cyclic structure, often
associated with a cyclopropane feature, which we attribute to the
high RON and OS for components with a cyclopropane substructure
in the training set of the GNN model.**3 Most top molecules gener-

ated by the two VAE models include strongly branched non-cyclic
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FIGURE 6 Top 12 candidates identified by the three different generator models with stopping criterion SCymojecs (Mmax. 1000 unique
molecules or max. 2000 total molecules) and applicability domain. RON and OS values are predicted by the graph neural network.®®

TABLE 1 Results of optimization over five runs each
JT-VAE MHG-VAE MoIGAN
Predicted RON + OS BO BO-+AD GA GA+AD BO BO+AD GA GA+AD BO BO+AD GA GA+ AD
SCrmolecs Max 205 130 129 130 138 129 136 131 121 121 121 121
(1000 unique  \eantop 181 125 125 126 131 125 132 128 110 111 116 116
molecules, 20
2000 total) )
#runs: 5 # unique 2390 1347 3472 3712 4671 4308 4683 4427 21 21 46 46
mol.
# promising 117 10 15 19 45 9 52 30 0 o 0 o
mol.
SCtime Max 205 130 187 131 138 129 145 131 121 121 121 121
(12hrun Meantop 183 126 180 130 133 126 140 129 111 112 118 118
time) 20
#runs: 5
# unique 2996 1935 109,830 80,818 6710 7081 55255 46,989 22 23 193 172
mol.
# promising 140 12 2096 376 104 15 678 142 0 o 0 o
mol.

Note: A molecule is considered promising if both RON > 110 and OS > 10. Runs with applicability domain are indicated by +AD.

components, often in combination with one or two oxygen atoms,
which are also known for high RON and OS values. Both VAE models
generate the popular octane enhancers MTBE and ETBE, and some
related small, branched ether structures. The JT-VAE also identifies
ethanol, the prototype biofuel for S| engines.

Table 1 shows the statistics of all the runs with and without the
AD, whereby each entry corresponds to the aggregated results over
five runs. Both the maximum and the mean predicted RON + OS are
typically lower if the AD is used. In most cases, also the total number
of molecules generated is lower if the AD is considered. The observa-
tion that the AD often reduces the exploration performance is
expected and in fact intended as the AD prohibits the generators from

exploring structures that are far from the training data by strongly
extrapolating the GNN model. We want to emphasize that we
find the generators to mainly produce chemically valid molecules.
Otherwise, for example, MolGAN sometimes generates discon-
nected substructures, the generated molecule is dropped so that
effectively no chemically invalid structures are provided to the GNN
and AD. Note that generated molecules, which are considered highly
dissimilar to the training molecules by the AD, can still be chemically
valid. We show examples of such chemically valid molecules well
outside the GNN's AD in Figure 7, where the top candidates identi-
fied by the two VAEs with SCiime are depicted; we refer to the Sup-
porting Information S1 for further examples.
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When visually inspecting the top molecules from the design runs with-
out AD, we find that the obtained molecules are typically huge, strongly
branched hydrocarbons, for example, with up to almost 50 carbon atoms.
As such compounds are presumably solid at room temperature, they are
not suitable as fuels. To avoid the formation of solids within the fuel blend,
a constraint on the melting point could be included in the design loop.
However, the melting point can only serve as a rough proxy for the suit-
ability of a compound as an octane booster, since miscibility and volatility
also depend on the composition of the base fuel and the blending
ratio.***3* Some of the proposed large molecules might be soluble in a fuel
blend, which could be evaluated in further investigations of mixture prop-
erties, but is beyond the scope of this work. Furthermore, the RON and
OS predictions for the molecules identified with the JT-VAE without AD
(cf. Figure 7A) are visibly higher than the maximum RON (of 120 for

6813%  and the maximum OS (of 36 for

1,3,5-trimethylbenzene
1,4-cyclohexadiene®®'%) of the data used to train the GNN prediction
model, indicating strong extrapolation. In the following, we therefore pre-

sent and discuss only those results that have been obtained with the AD.

HHHHHH R OHRHE R ottt

RON: 133 RON: 143 RON: 140 RON: 143 RON: 122
0s:72 0s:57 0S: 58 0S:52 0s:70
(A) JT-VAE
RON: 119 RON: 121 RON: 119 RON: 115 RON: 118
0S: 26 0S:23 0S:23 0S: 26 0S:23
(B) MHG-VAE

FIGURE 7 Top five candidates identified by the two VAE
generator models with stopping criterion SCme (12 run time) and
without applicability domain. All RON and OS values are GNN
predictions.®®
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We observe that the VAE generators predict molecules with a
maximum RON + OS of about 130 while MolGAN achieves a maxi-
mum of only 121 (cf. Table 1). The maximum RON + OS values of
slightly above 130 for the two VAE models are in good agreement
with known high-octane fuels such as MTBE with its experimentally
validated RON + OS of 135. The encouraging performance of both
VAE generators thus shows the general feasibility of our graph-ML
CAMD framework utilizing the SVM-based AD.

To further compare the different generator and optimization
combinations, we analyze the number of distinct molecules gener-
ated as well as the number of molecules with promising ignition
properties, that is, the molecules with both a predicted RON > 110
and a predicted OS > 10. Both VAEs find a large number of distinct
molecules irrespective of the employed stopping criteria
(cf. Table 1). Specifically for SCymolecss both VAEs generate more
than 3500 unique molecules out of 5000 maximally possible unique
molecules (1000 unique molecules each over five runs). This means
that not only do the VAEs find a large number of distinct molecules
in each run, but the identified molecules also vary greatly between
different runs, thus leading to an overall small number of duplicates.
In contrast, MolGAN mainly generates duplicates of which none are
considered promising (cf. Table 1). Comparing the results for SCymo-
lecs aNd SCiime (cf. Table 1), it can be seen that the VAE-GA combi-
nations significantly increase the number of both explored and
promising candidates with longer run time. Apparently, this observa-
tion does not extend to BO, with one possible explanation being
that BO becomes inherently slower as more data points are added
to the surrogate model, thereby reducing the number of predictions
per time, whereas the corresponding rate remains unchanged in the
GA (cf. Section 3.3).

The predicted RON and OS values of all promising molecules
obtained with the two stopping criteria are shown in Figure 8. We
also highlight those molecules identified in the SCymolecs Setting that

are commercially available at chemical suppliers. Commercial

QM9 molecules
¥ Generated molecules
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®
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v
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L A v
v v
v
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(B) SCime (12h run time),
all generators, with AD

FIGURE 8 Promising candidates (predicted RON > 110 and OS > 10). Commercially availability (red crosses) determined by manual search on

Sigma-Aldrich and Chemspider websites*3¢37
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availability was assessed by a manual search on Sigma-Aldrich*3¢ and

7 websites without imposing a price limit but only

Chemspider®
including those molecules with an explicitly stated price; we did not
search for the lowest price on different websites. For SCime,
Figure 8B, the effort for a manual search was considered dispropor-
tional due to the high number of promising candidates. We further
indicate molecules with high predicted RON + OS in the QM9 data-
base!?#125 that is used for training the generative models; additional
QM9 statistics are provided in the Supporting Information S1. Figure 8
demonstrates that the graph-ML CAMD framework is able to gener-
ate molecules with high predicted RON and high predicted OS that
are not in the QM9 database. This observation is emphasized in case
of SCiime (cf. Figure 8B). The capabilities of the generator models to
generalize therefore allow to explore novel molecules for further

investigation.

4.2 | Discussion of top candidates

In the discussion of the top molecules, we restrict our analysis to the
promising molecules (RON > 110 and OS > 10) generated using SCgmo-
lecs, @S the number of molecules generated with SCiine is very large; we
refer to the Supporting Information S1 for a detailed list of all gener-
ated promising molecules. The top molecules that are also commercially
available are illustrated in Table 2, including RON and OS predictions,
literature values for RON and OS (where available), price category, and
the respective combinations of generator and optimizer that identified

the molecule.

421 | Promising classes of molecules

We find both pure hydrocarbons and oxygenated hydrocarbons
(cf. Table 2), molecules already in use as octane boosters and mole-
cules that constitute interesting candidates for further experimental
investigation. The two identified alkanes, ethane and cyclopropane,
are gaseous under ambient conditions, whereas the one aromatic
hydrocarbon, 3-ethyltoluene, is liquid. The known RON + OS scores
from literature for ethane and 3-ethyltoluene of 122 and 124, respec-
tively, are in good agreement with the GNN predictions. We want to
emphasize that gaseous compounds, such as ethane and cyclopro-
pane, are difficult to implement as octane boosters. To prevent gases
within the candidate list, one could include boiling point constraints in
the design loop. However, the normal boiling point is, similar to the
melting point discussed at the beginning of this section, only a rough
preselection criterion, since the miscibility and volatility of a potential
octane booster in a fuel blend strongly depend on the overall blend
composition. Next to alkanes, three ethers are identified, including
methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) that
are used as octane boosters in practical applications.*®” Their experi-
mentally RON + OS scores of 135 and 13418137 are slightly higher

than the predicted scores. Furthermore, molecules from the class of

AICBE R AL—L1Lor

aldehydes are identified. It has been found, however, that the forma-
tion of aldehydes during the combustion process of high-octane, oxy-
genated hydrocarbons results in increased exhaust emissions,**®
indicating a lower suitability of aldehydes as fuels. Polyfunctional mol-
ecules with an aldehyde and an ether group are generated as well,
which also entail the problem of aldehyde emissions. Further poly-
functional molecules containing an ether group and a ketone group
are generated, with ketones being prominent high-octane fuels.244145
Most of the molecules containing an ether, a ketone, and/or an alde-
hyde functionality have a compact, branched structure with similari-
ties to MTBE and ETBE, making them interesting high-octane fuel
candidates; however, they also have a high price, hindering experi-
mental investigation.

The last top candidate in Table 2, namely 2,2-dimethoxypropane
(2,2-DMP), belongs to the class of acetales. It is a compact structure
similar to ETBE, with the difference being that one carbon atom is
replaced by a second oxygen atom. 2,2-DMP also has a low price,
making it an attractive target for experimental investigation. A DCN
measurement of 31 is known from literature’#® which, however, is
not suggestive of a very high RON, as molecules with RON > 110 typ-
ically correspond to DCN values below 10, cf. references 2,147. Our
high RON + OS prediction (cf. Table 2), however, is consistent with
the RON + OS value of 143 stated in a recent study by Li et al.X® who
used a ML-QSPR prediction model combining both ML and a group
contribution approach. Another ML-based QSPR model for RON and
OS recently developed by vom Lehm et al.2%® likewise predicts a high
RON + OS value of 156.

422 | Comparison to previous fuel design studies

Our commercially available top candidates (cf. Table 2) generally
match the molecular classes identified in previous fuel design/
screening studies for Sl engine fuels, for example, in references
2,18,40,148. Specifically, prominent molecular classes from previous

studies include the herein identified groups of ethers>18148

2,18,40,148 8 18,40 8 and ace-

ketones, aromatics,**® aldehydes, alkanes,**
tals.*® Interestingly, our top candidates do not include any esters,
alcohols, and furans that have often been identified in the litera-
ture. 218148 \When inspecting all molecules generated in our design
loop runs with SCgmolecs and with AD, we indeed find esters
(e.g., methyl acetate), alcohols (e.g., ethanol and methanol), as well as
furans (e.g., 2-methylfuran). However, these are not considered top
candidates as predicted OS is below 10 for most esters and predicted
RON is slightly below 110 in case of furans and alcohols. Such RON
and OS predictions are generally in accordance with the literature
values for representative molecules of these classes, cf. references
42,68,135,149,150.

The polyfunctional molecules identified in our study are
hardly discussed in the literature. It should be noted that the availability
of experimental RON and MON values for polyfunctional molecules is

very limited, indicating a high uncertainty in the GNN predictions.
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TABLE 2  All 16 commercially available molecules with predicted RON > 110 and OS > 10 (identified in SCymolecs Setting and active
applicability domain)

Class Structure SMILES RON (0} Price category ~ Generator (optimizer)
Alkanes D cicci 110 16 Medium JT (BO, GA),
cyclopropane MHG (BO, GA)
cc 110 (111%%%)  12(11%%%)  Low JT (BO, GA)
ethane
Aromatics v@ CCclccec(C)cl 110 (112%%)  11(12%%%)  High JT (GA)
3-ethyltoluene
Ethers /o>< coc(c)e)c 115(118"%%) 14 (17"%%)  Low JT (BO, GA),
MTBE MHG (BO, GA)
e ccoc(o)c)c 114 (118%%) 14 (16™°)  Medium JT (BO, GA),
o ETBE MHG (GA)
o>< CC(C)oC(C)c)c 114 13 High JT (GA),
\( tert-butyl isopropyl ether MHG (GA)
Aldehydes >Z\\\ CC(C=0)C(Q)C)C 111 12 High MHG (GA)
° 2,3,3-trimethylbutanal
XQO CC(C)(C)C=0 111 11 Medium JT (GA),
trimethylacetaldehyde MHG (BO)
Polyfunctional NN CC(C)(C)occ=0 116 15 High MHG (GA)
(aldehyde + tert-butoxyacetaldehyde
ether) S CCOC(O)(C)C=0 114 13 High MHG (GA)
- 2-ethoxy-2-methylpropanal
A J coc(c)c)c=0 116 11 High MHG (GA)
2-methoxy-2-methylpropanal
a% CC(c)oc(c)c)c=0 114 12 High MHG (GA)
\( \ 2-methyl-2-propan-2-yloxypropanal
0:% / COC(C)C=0 112 11 High MHG (BO, GA)
0
2-methoxypropanal
Polyfunctional )74 P COC(C)(C)C(C)=0 113 11 High MHG (GA)
(ketone + ° © 3-methoxy-3-methyl-2-butanone
ether) l COC(C)C(=0)C(C)C)C 111 12 High MHG (GA)
%n 4-methoxy-2,2-dimethylpentan-3-one
COC(C)c)oc 116 14 Low JT (GA)

Acetals \ /
o 0

2,2-dimethoxypropane

Note: RON and OS data available in the literature are stated in parentheses. Prices are categorized based on data from different chemical
suppliers'3414°-142; <1000$/1 (low), >1000 $/I and <10,000$/I (medium), >10,000 $/I (high).

The generated top candidate of acetals, 2,2-DMP, has also been
identified in the fuel screening by Li et al.'® and will be investigated

experimentally in the following.

423 | Experimental assessment of 2,2-DMP

Experimental investigation of 2,2-DMP was conducted in dedicated
test engines according to the DIN EN ISO 5164 and DIN EN ISO
5163 standards,*>? respectively, by an external company. Measure-
ment of RON and MON of pure 2,2-DMP, however, could not be per-
formed. Instead, blends of 2,2-DMP with 90%, 80%, and 60% (v/v) of
gasoline were investigated. The extrapolation to pure component
values yielded a RON of 91.75 (+0.25) and a MON of 87.27 (+0.3),
hence a RON + OS score of about 96, indicating a strong

misprediction by our GNN model as well as the models by Li et al.'®

and by vom Lehn et al.2%® To further clarify the ignition properties of
2,2-DMP, we experimentally measured ignition delay times (IDT) in a
rapid compression machine (RCM)*>3154 and compared the chemical
reactivity of 2,2-DMP to that of a typical RON95E10 pump station
fuel. IDT measurements for 2,2-DMP were performed at an end-of-
compression pressure of 20 bar for a stoichiometric mixture and with
an nitrogen-to-oxygen dilution ratio of 3.762 in the temperature
range of 647-793 K. Details on the RCM measurements can be found
in the Supporting Information S1. The ignition took place via a two-
stage process in the investigated temperature regime indicating strong
low-temperature chemistry, cf. Figure 9, not representative for a high-
octane fuel. Compared to the RON95E10 fuel, 2,2-DMP shows a dis-
tinctively higher reactivity between 647 and 750 K pointing toward a
lower knock resistance and thus RON value. The RCM results suggest
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FIGURE 9 Measured ignition delay time in a rapid compression
machine for 2,2-dimethoxypropane and a commercially available
RON95E10 pump station fuel. The error bars indicate +20% scatter of
the measured ignition delay time. The yellow line corresponds to a
threefold Arrhenius model fit to the RON95E10 ignition delay

times. 1>

a slightly worse knock resistance of 2,2-DMP compared to
RON95E10 pump station fuel, supporting the extrapolated RON and
MON measurements.

The case of 2,2-DMP shows the potential weaknesses of a fully
data-driven approach in a data-scarce environment. We account the
large model prediction error of our GNN as well as those of the
models by Li et al.»® and by vom Lehn et al.'°® to the comparatively
little training data available for RON and MON modeling. Specifi-
cally, our RON and MON training database includes just five ethers,
a single acetal (not 2,2-DMP), no aldehydes, eight ketones, and only
two molecules with more than one type of oxygen functionality
(cf. reference 68). Similar data limitations apply to the other RON

18,103 ayplaining their similarly bad pre-

and MON prediction models,
dictions in case of 2,2-DMP. Furthermore, we want to stress the
fact that no RON and MON values for aldehydes are included in the
training data, so our GNN may not sufficiently distinguish between
aldehydes and ketones. The RON + OS predictions of the identified
molecules with an aldehyde group are therefore considered subject
to large uncertainty. In the case of 2,2-DMP, a DCN data point was
available and used in the training of our multitask GNN for simulta-
neous RON, MON, and DCN prediction (cf. Section 3.2). As
expected, our AD approach based on majority voting (cf. Section 3.4)
considers 2,2-DMP within the region of reliable predictions as it
was part of the training data. Yet, only 31 out of 40 SVMs voted for
2,2-DMP. Increasing the AD consensus level, for example, 80%
instead of 50%, may provide some protection against such strong
mispredictions, at the cost of a smaller search space. A systematic
investigation of the relationship between the AD consensus level
and the prediction accuracy for molecules proposed by the design
loop, however, is beyond the scope of this work. The weak spots of
prediction models for fuel ignition quality remain a huge challenge
for model-based fuel design, even when utilizing state-of-the-art
ML%8193 and an applicability domain. Therefore, acquiring more

training data is absolutely crucial.

AI?BII:'JRNALM
5 | CONCLUSION

We propose a fully data-driven CAMD approach based on recent
methods from graph-ML for the identification of molecules with desired
ignition characteristics for modern SI engines. Our graph-ML CAMD
framework utilizes a representation of molecules as graphs and incorpo-
rates three modules for building a molecular design loop: (1) molecule
generation from a continuous molecular space with generative graph-
ML, (2) molecular property prediction through GNNSs, and (3) optimization
for strategic sampling from the continuous molecular space to find mole-
cules with high predicted RON + OS. The modular structure enables the
exploration of different ML models in combination with different optimi-
zation approaches. We additionally present a novel approach to identify
the applicability domain (AD) of GNN models for molecular property pre-
diction. By predicting promising high-octane fuel molecules in a fully
data-driven fashion, our study exemplifies how recent developments in
ML can be utilized for CAMD and its automation.

The top molecular candidates identified with our graph-ML
CAMD framework are from well-known molecular classes for
high-octane fuels, for example, ethers and ketones, and include both
well-established components like MTBE and ETBE as well as new
promising candidates for further experimental investigation. The com-
parison of different generative graph-ML models, namely JT-VAE,>?
MHG-VAE,>? and MolGAN,>* in combination with different optimiza-
tion approaches, BO and GA, shows that the choice of the generative
model and optimization strategy influences the number and type of
identified candidate molecules. Both VAEs provide a diverse continu-
ous molecular space with a large number of potential molecules, while
MoIGAN generates a comparatively low number of candidates and
yields lower target property values. We conclude that the GA is well
suited for exploring large portions of the continuous molecular space of
the generative models, especially when working with high dimensions
where BO struggles but still finds some promising candidates. Our AD
approach additionally enables us to focus the exploration on candidates
with presumably more accurate predictions. The experimental investi-
gation of one candidate within the AD, namely 2,2-dimethoxypropane,
shows lower RON and OS values than predicted by our GNN model,
demonstrating the limitations of CAMD in a comparatively data-scarce
environment. We thereby highlight the importance of experimental
validation to fuel design and the need for further RON and OS training
data. Furthermore, the correlation between the AD threshold, that is,
the consensus level, and the prediction accuracy for molecules
proposed by the design loop should be investigated.

Future work could include additional physical and chemical prop-
erties in the design, for example, melting point, boiling point, vapor
pressure, toxicity, or viscosity, similar to previous studies.?1840:148
The framework, in principle, is not bound to fuel design as application
but could also be applied to other CAMD applications such as drug
discovery, design of catalysts, pesticides, and so forth.
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